Iterative process for G2-multi degree reduction of Bézier curves

نویسندگان

  • Abedallah Rababah
  • Stephen Mann
چکیده

In this paper, the issue of multi-degree reduction of Bézier curves with C and G-continuity at the end points of the curve is considered. An iterative method, which is the first of this type, is derived. It is shown that this algorithm converges and can be applied iteratively to get the required accuracy. Some examples and figures are given to demonstrate the efficiency of this method. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

Optimal multi-degree reduction of Bézier curves with G2-continuity

In this paper we present a novel approach to consider the multi-degree reduction of Bézier curves with G2-continuity in L2norm. The optimal approximation is obtained by minimizing the objective function based on the L2-error between the two curves. In contrast to traditional methods, which typically consider the components of the curve separately, we use geometric information on the curve to ge...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Matrix representation for multi-degree reduction of Be'zier curves

In this paper, we consider multi-degree reduction of Bézier curves with constraints of endpoints continuity with respect to L2 norm. The control points of the degree reduced Bézier curve can be obtained as a product of the degree reduction matrix and the vector of original control points. We find an explicit form of the multi-degree reduction matrix for Bézier curve with constraints of endpoint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2011